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MULTILAYER FEED-FORWARD NETWORK 

Preview 

The power of neural networks come from their ability to learn the representation in the 

training data and how to best relate it to the output variable that you want to predict. In this sense 

neural networks learn a mapping. Mathematically, they are capable of learning any mapping 

function and have been proven to be a universal approximation algorithm. 

The predictive capability of neural networks comes from the hierarchical or multi-layered 

structure of the networks. The data structure can pick out (learn to represent) features at different 

scales or resolutions and combine them into higher-order features. For example, from lines, to 

collections of lines to shapes. 

The weighted inputs are summed and passed through an activation function, sometimes 

called a transfer function.  

An activation function is a simple mapping of summed weighted input to the output of the 

neuron. It is called an activation function because it governs the threshold at which the neuron is 

activated and strength of the output signal. 

Historically simple step activation functions were used where if the summed input was 

above a threshold, for example 0.5, then the neuron would output a value of 1.0, otherwise it would 

output a 0.0. 

Traditionally non-linear activation functions are used. This allows the network to combine 

the inputs in more complex ways and in turn provide a richer capability in the functions they can 

model. Non-linear functions like the logistic also called the sigmoid function were used that output 

a value between 0 and 1 with an s-shaped distribution, and the hyperbolic tangent function also 

called tanh that outputs the same distribution over the range -1 to +1. 

Figure 1 shows a typical three-layer perceptron. In general, a standard L-layer feed-forward 

network (we adopt the convention that the input nodes are not counted as a layer) consists of an 

input stage, (L-1) hidden layers, and an output layer of units successively connected (fully or 

locally) in a feed-forward fashion with no connections between units in the same layer and no 

feedback connections between layers 
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Figure 1: A typical three-layer feed-forward network architecture 

 

Multilayer perceptron 

The most popular class of multilayer feed-forward networks is multilayer Perceptrons in 

which each computational unit employs either the thresholding function or the sigmoid function. 

Multilayer Perceptrons can form arbitrarily complex decision boundaries and represent any 

Boolean function. The development of the back-propagation learning algorithm for determining 

weights in a multilayer perceptron has made these networks the most popular among researchers 

and users of neural networks. 

We denote 𝑤𝑖𝑗
𝑙 as the weight on the connection between the 𝑖th unit in layer (𝑙 − 1) to 𝑗th 

unit in layer 𝑙. 

Let {(𝒙(𝟏), 𝒅(𝟏)), (𝒙(𝟐), 𝒅(𝟐)), … , (𝒙(𝒑), 𝒅(𝒑))} be a set of 𝑝 training patterns (input-output 

pairs), where 𝒙(𝒊) ∈ ℝ𝑛 is the input vector in the 𝑛-dimensional pattern space, and 𝒅(𝒊) ∈ [0,1]𝑚, 

an 𝑚-dimensional hypercube. For classification purposes, 𝑚 is the number of classes. The squared- 

error cost function most frequently used in the ANN literature is defined as  

𝐸 =
1

2
∑‖𝒚(𝑖) − 𝒅(𝑖)‖

2

𝑝

𝑖=1

 

The back-propagation algorithm is a gradient-descent method to minimize the squared-

error cost function in the Equation above. 
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Back-Propagation algorithm 

1. Initialize the weight to small random values. 

2. Randomly choose an input pattern 𝒙(𝝁). 

3. Propagate the signal forward through the network. 

4. Compute 𝛿𝑖
𝐿 in the output layer (𝑜𝑖 = 𝑦𝑖

𝐿) 

𝛿𝑖
𝐿 = 𝑔′(ℎ𝑖

𝐿) 𝑑𝑖
𝝁

− 𝑦𝑖
𝐿 , 

Where ℎ𝑖
𝑙  represent the net input to the 𝑖th unit in the 𝑙th layer, and 𝑔′  is 

the derivative of the activation function 𝑔. 

5. Compute the deltas for the preceding layers by propagating the errors 

backwards; 

𝛿𝑖
𝑙 = 𝑔′(ℎ𝑖

𝑙)∑𝑤𝑖𝑗
𝒍+1𝛿𝑗

𝑙+1

𝑗

, 

For 𝑙 = (𝐿 − 1), … , 1. 

6. Update the weight using 

Δ𝑤𝑖𝑗
𝑙 = 𝜂𝛿𝑖

𝑙𝑦𝑗
𝑙−1 

7. Go to step 2 and repeat for the next pattern until the error in the output 

layer is below a prespecified threshold or maximum number of iterations 

is reached. 

 

A geometric interpretation shown in Figure 2 can help explicate the role of hidden units 

(with the threshold activation function). 

Each unit in the first hidden layer forms a hyperplane in the pattern space; boundaries 

between pattern classes can be approximated by hyperplanes. A unit in the second hidden layer 

forms a hyperregion from the outputs of the first-layer units; a decision region is obtained by 

performing an AND operation on the hyperplanes. The output-layer units combine the decision 

regions made by the units in the second hidden layer by performing logical OR operations. 

Remember that this scenario is depicted only to explain the role of hidden units. Their actual 

behavior, after the network is trained, could differ. 

A two-layer network can form more complex decision boundaries than those shown in 

Figure 2. Moreover, multilayer Perceptrons with sigmoid activation functions can form smooth 

decision boundaries rather than piecewise linear boundaries. 
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Figure 2: A geometric interpretation of the role of hidden unit in a two-dimensional input space. 

 

Local Minima 

In gradient descent we start at some point on the error function defined over the weights 

and attempt to move to the global minimum of the function. In the simplified function of Fig 3a 

the situation is simple. Any step in a downward direction will take us closer to the global minimum. 

For real problems, however, error surfaces are typically complex, and may more resemble the 

situation shown in Fig 3b. Here there are numerous local minima, and the ball is shown trapped in 

one such minimum. Progress here is only possible by climbing higher before descending to the 

global minimum. 

Momentum 

A momentum term was introduced in the BP algorithm by Rumelhart. The idea consists in 

incorporating in the present weight update some influence of the past iterations. The delta rule 

becomes 

∆𝑤𝑖𝑗(𝑛) =  −𝜂
𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
+ 𝛼∆𝑤𝑖𝑗(𝑛 − 1). 

𝛼 is the momentum parameter and determine the amount of influence from the previous 

iteration on the present one. The momentum introduces a “damping” effect on the search procedure 

thus avoiding oscillations in irregular areas of the error surface by averaging gradient components 
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with opposite sign and accelerating the convergence in long flat areas. In some situations, it 

possibly avoids the search procedure from being stopped in a local minimum helping it to skip 

over those regions without performing any minimization there. In summary it has been shown to 

improve the convergence of the BP algorithm, in general. 

 

Figure 3: Local Minima and global minimum 

 

Batch Backpropagation 

Neural networks are often trained using algorithms that approximate gradient descent. 

Gradient descent learning (also called steepest descent) can be done using either a batch method 

or an on-line method. In batch training, weight changes are accumulated over an entire presentation 

of the training data (an epoch) before being applied, while on-line training updates weights after 

the presentation of each training example (instance). Another alternative is sometimes called mini-

batch, in which weight changes are accumulated over some number 𝑢 of instances before actually 

updating the weights. 

on-line training learns faster than batch training because it takes many steps per epoch which can 

follow curves in the gradient. On-line training handles large training sets and redundancy in data 

well and avoids the need to store an accumulated weight change. 

Batch training, on the other hand, can only take a single step per epoch, which must be in a straight 

line, please see Fig 4. It estimates the gradient only at the starting point in weight space, and thus 

cannot follow curves in the error surface. As the size of the training set gets larger, batch training 

must use a smaller learning rate in order for its learning to remain stable. 
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Figure 4: Example of changes in weight space. The directed curves indicate the underlying true gradient of the error surface (a) 

Batch training. Several weight changevectorsandtheirsum. (b) On-line training. The local gradient influences the direction of 

each weight change vector, allowing it to follow curves 
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